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Abstract In addition to their role in energy transduction,
mitochondria play important non-canonical roles in cell
pathophysiology, several of which utilize the mitochondrial
ATP-sensitive K+ channel (mitoKATP). In the normal heart,
mitoKATP regulates energy transfer through its regulation of
intermembrane space volume and is accordingly essential
for the inotropic response during periods of high workload.
In the ischemic heart, mitoKATP is the point of convergence
of protective signaling pathways and mediates inhibition of
the mitochondrial permeability transition, and thus necrosis.
In this review, we outline the experimental evidence that
support these roles for mitoKATP in health and disease, as
well as our hypothesis for the mechanism by which
complex cardioprotective signals that originate at plasma
membrane receptors traverse the cytosol to reach mito-
chondria and activate mitoKATP.
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Introduction

Mitochondria are traditionally described as the power
houses of the cell due to their role in ATP production.
However, mitochondria carry out other essential physiolog-

ical functions, such as regulation of intracellular calcium
homeostasis (Kowaltowski 2000) and thermogenesis in
hibernating mammals (Argyropoulos and Harper 2002).
Mitochondria, through mitoKATP, are relay stations for
signaling leading to gene transcription (Garlid et al.
2003). Mitochondria are the source and target for anti- as
well as pro-apoptotic factors, such as cytochrome c and the
Bcl-2 family of proteins (Fleury et al. 2002; Jeong and Seol
2008). Mitochondrial function is essential for tissue
protection following ischemia-reperfusion via production
of signaling ROS for activation of protective kinases
(Hausenloy et al. 2005; Costa et al. 2008). Through
activation of mitoKATP, mitochondria are able to maintain
efficient energy exchange with the cytosol during inotropic
stress (Garlid et al. 2006). Here, we will review briefly the
effects of mitoKATP opening on mitochondrial physiology
in the healthy and ischemic heart.

Effects of mitoKATP activity in the healthy heart

During normoxia in the unstressed heart, respiration generates
an electrical gradient across the mitochondrial inner mem-
brane of 160–180 mV. This drives a steady diffusive K+ influx
into the matrix, which is balanced in the steady state by K+

efflux via the K+/H+ antiporter (Garlid and Paucek 2003). If
mitoKATP is now opened, additional K+ is driven into the
matrix, accompanied by osmotically obligated water and
electroneutrally transported anions, primarily phosphate.
Within about 30 s, the mitochondria achieve a new steady
state characterized by three changes: (i) a small increase in
matrix volume, (ii) a modest alkalinization, and (iii) a very
slight acceleration of respiration (Kowaltowski et al. 2001;
Andrukhiv et al. 2006; Costa et al. 2006a). MitoKATP

opening during normoxia occurs in physiological response
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to either plasma membrane receptor activation, whose signal
migrates to mitochondria and phosphorylates the channel, or
in response to a KATP channel opener. In both cases, the
important effect is matrix alkalinization, which causes mild
inhibition of Complex I and increased ROS production
(Andrukhiv et al. 2006). In support of this interpretation, nice
studies from Dos Santos’ laboratory (Pasdois et al. 2008), in
which fluorescence of redox-sensitive dyes were monitored
noninvasively with an optic fiber probe placed near the left
ventricular wall of Langendorff-perfused rat hearts, showed
that diazoxide induced a moderate and transient increase in
ROS production after diazoxide administration. Cardiopro-
tection was reflected in a strong decrease in ROS generation
during the subsequent ischemic and reperfusion phases.
MitoKATP-dependent signaling during normoxia is an essen-
tial component of preconditioning and cardioprotection
against ischemia-reperfusion injury. The ROS produced
secondary to mitoKATP opening transmit the signal to
specific mitochondrial PKCεs and to other protective kinases
in the cell. The ROS is also an essential component of
physiological signaling in the absence of subsequent
ischemia, for example signaling the nucleus to trigger gene
transcription (Garlid et al. 2003).

The situation is subtly different in the heart undergoing
inotropic stress with associated high energy demand in
response, for example, to adrenergic stimulation (MacGowan
and Koretsky 2000; Saucerman et al. 2003). The great
increase in ATP synthesis in response to this demand will
decrease the membrane potential somewhat, thereby decreas-
ing the driving force for K+ influx. Uncompensated, this will
result in matrix contraction and reciprocal expansion of the
intermembrane space (IMS), causing dissociation of mito-
chondrial creatine kinase from VDAC and disruption of
efficient energy transfer between mitochondria and contrac-
tile proteins via creatine/creatine phosphate (Saks et al.
1998). Energy transfer by ATP/ADP exchange across the
outer membrane does not pose a problem when the heart is
working in the lower 50% of its dynamic range, but it cannot
sustain inotropy above this range. This was demonstrated in
isolated hearts undergoing inotropic stress in response to
elevated calcium, ouabain, or dobutamine (Garlid et al.
2006). In each case, the inotropic response was either
prevented or reversed (depending on time of drug addition)
by two different mitoKATP inhibitors, 5-hydroxydecanoic
acid (5-HD) and tetraphenylphosphonium (Garlid et al.
2006). Our interpretation is that the inotropic signal goes to
mitochondria to open mitoKATP by phosphorylation. Thus,
inotropy requires mitoKATP to open, not to increase matrix
volume, but to maintain constant IMS volume. The added
K+ permeability simply compensates for the lower driving
force. Note that volume and K+ content remain unchanged,
but matrix alkalinization and consequent ROS production
still occur, due to the lower membrane potential.

Effects of mitoKATP activity in the ischemic heart

Mitochondria appear to be the effectors responsible for both
ischemia-reperfusion injury (IRI) and cardioprotection. The
heart is strictly aerobic and therefore vulnerable to a decrease
in oxygen supply (Jennings and Ganote 1976). Ischemia
causes immediate disturbance of mitochondrial function,
including failure of ATP synthesis, failure to respire, and a
drop in ∆Ψ. This is accompanied by changes in cytosolic
composition, including increased Ca2+, phosphate and fatty
acids. This altered state is met during reperfusion by a large
increase in reactive oxygen species (ROS) originating from
the respiratory chain (Droge 2002; Turrens 2003). These
factors promote opening of the mitochondrial permeability
transition (MPT), a high-conductance pore in the inner
mitochondrial membrane, which is the main cause of
necrotic cell death in IRI (Crompton 1999; Di Lisa et al.
2001; Hausenloy et al. 2002; Weiss et al. 2003; Di Lisa and
Bernardi 2006). It follows that any hope of protecting the
heart from these consequences must ultimately involve the
prevention of MPT opening (Weiss et al. 2003).

The heart posseses self-defense mechanisms that can
reduce cell death and functional impairment after prolonged
episodes of ischemia-reperfusion. Cardioprotective proce-
dures include ischemic preconditioning (IPC), in which one
or more periods of brief ischemia precede the index ischemia
(Murry et al. 1986) and ischemic postconditioning (POC), in
which staccato ischemia-reperfusions are administered im-
mediately on reperfusion (Zhao and Vinten-Johansen 2006).
A large variety of receptor agonists are also protective when
administered prior to ischemia. Indeed, IPC and POC are
receptor-mediated processes that are triggered by Gi-protein
coupled receptor (GPCR) agonists released by the ischemic
heart, primarily bradykinin, opioid peptides, and adenosine.
Most other GPCR ligands are also cardioprotective (Downey
et al. 2007). Cardioprotection is also afforded by several
non-GPCR receptors, such as digitalis and calcium (Pasdois
et al. 2007). A variety of non-receptor agents that act on
intracellular targets are also protective and are reviewed in
ref. (Garlid et al. 2008). Noteworthy among these are the
KATP channel openers. All K+ channel openers (KCO) are
cardioprotective, and they have been shown to be cardio-
protective in all species examined (Grover et al. 1989;
Grover and Garlid 2000). It was initially assumed that these
were acting on sarcolemmal KATP. About 12 years ago, we
showed that it is in fact mitoKATP that is responsible for
cardioprotection (Garlid et al. 1996; Garlid et al. 1997).
Thus, diazoxide was shown to be a potent mitoKATP opener
and was as effective as cromakalim in protecting the heart.
But diazoxide protection, unlike that mediated by cromaka-
lim, was not accompanied by action potential duration
(APD) shortening, thus demonstrating that cardioprotection
was not due to sarcKATP opening.
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All of these protective mechanisms have been shown to
require mitoKATP opening, increased ROS production, and
activation of one or more PKCεs (Downey et al. 2007; Costa
et al. 2008; Garlid et al. 2008). Thus, cardioprotection
involves both mitoKATP opening and a decrease in MPT
opening. We hypothesize that these two phenomena are part
of the same signaling pathway (Costa et al. 2006b), as
discussed in the next section.

Signaling from receptor to mitochondria by signalosome

We propose that cardioprotective signals are transmitted to
mitochondria by signalosomes, which are vesicular, multi-
molecular signaling complexes that are assembled in
caveolae and deliver signals to the mitochondrial outer
membrane (MOM) (Garlid et al. 2008; Quinlan et al. 2008).
A diagram of the signalosome hypothesis is contained in
Fig. 1. Briefly, the activated receptor migrates to caveolae,
where a signaling platform is assembled, then buds off as a
signalosome, internalizes, and migrates to the mitochondria.
There, the terminal kinase of the signalosome phosphorylates
its receptor. GPCR-induced signalosomes use PKG as the
terminal kinase, and ouabain- and calcium-induced signal-
osomes use Src and PKCε, which act in concert. Phosphor-

ylation of receptors R1 or R2 causes the signal to be
transmitted across the intermembrane space to PKCε1 on the
mitochondrial inner membrane, leading to the intramitochon-
drial signaling pathway diagrammed in Fig. 2 and described
previously (Kowaltowski et al. 2001; Andrukhiv et al. 2006;
Costa et al. 2006a; Garlid et al. 2008).

We purified signalosomes from hearts subjected to
various conditioning protocols and then assayed their
functional activity by adding them to mitochondria from
untreated hearts. With no further additions, the signal-
osomes caused mitoKATP opening and MPT inhibition
(Quinlan et al. 2008). Functionally active signalosomes
were obtained from hearts exposed to bradykinin, ouabain,
calcium, ischemic preconditioning, ischemic postcondition-
ing, acetylcholine and adenosine. The signalosomes were
dissolved by the cholesterol binding agent methyl-β-
cyclodextrin and were resistant to Triton X-100, properties
reflecting their caveolar origin. Electron microscopy
revealed that the signalosomes are about 140 nm in
diameter and can be decorated with immunogold labeled
caveolin 3 antibodies (Quinlan et al. 2008). The signal-
osome induced by bradykinin stimulation contains eNOS,
guanylyl cyclase, and cGMP-dependent protein kinase
(PKG), and we were able to demonstrate the participation
of each of these enzymes in the mitoKATP assay when
proper substrates were supplied (unpublished).

Summary and conclusion

MitoKATP play essential roles in the normal and ischemic
heart. Inotropic stimuli open mitoKATP to ensure efficient
energy transfer from mitochondria to the cytosol during
high workload situations. Protective stimuli against ische-

Fig. 1 The signalosome mechanism of cell signaling. Upon activation
by its agonist, the receptor migrates to caveolae, where a signaling
platform is assembled. This buds off as a signalosome and internal-
izes. The signalosome migrates via the cytoskeleton to mitochondria,
where it binds to receptors on the MOM, designated as R1 (for
GPCR-induced signalosomes) and R2 (for calcium or ouabain-
induced signalosomes). The terminal kinase of the signalosome
phosphorylates its specific MOM receptor. All GPCR signalosomes
use PKG as the terminal kinase (Costa et al. 2005), whereas the
ouabain and calcium signalosomes use Src and PKCε (Garlid et al.
2008). Phosphorylation of R1 or R2 causes the signal to be
transmitted across the intermembrane space to PKCε1 on the
mitochondrial inner membrane, leading to the intramitochondrial
signaling pathway described in Fig. 2

Fig. 2 Intramitochondrial signaling. PKCε1 opens mitoKATP by
phosphorylation (Costa et al. 2005; Jaburek et al. 2006). The ensuing
K+ influx leads to matrix alkalinization and increased ROS production
from Complex I (Andrukhiv et al. 2006). The increased ROS activate
a second inner membrane PKCε, PKCε2, which then inhibits the MPT
(Costa et al. 2006b)
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mia open mitoKATP to inhibit the onset of MPT, and thus
prevent necrosis. Signals from both inotropy and protection
are triggered at the level of the plasma membrane and must
cross the cytosol to induce mitoKATP opening. The
mechanism by which this occurs has been the subject of
our recent work. The signalosome mechanism is a powerful
new paradigm for cell signaling and cardioprotection.
Although our findings do not yet establish the signalosome
mechanism, they are sufficient to justify the suggestion as a
working hypothesis, allowing exploration of the conse-
quences for understanding ischemia-reperfusion injury,
cardioprotection, and cell signaling in general.

Acknowledgments This work was supported in part by grants
HL67842 and HL36573 from the National Heart, Lung, and Blood
Institute (to K.D.G.). A.D.T.C. is supported by a fellowship from the
Conselho Nacional de Desenvolvimento Científico e Tecnológico
(CNPq — process 152481/2007–9)

References

Andrukhiv A, Costa AD, West IC, Garlid KD (2006) Am J Physiol
291:H2067–2074

Argyropoulos G, Harper ME (2002) J Appl Physiol 92(5):2187–2198
Costa AD, Garlid KD, West IC, Lincoln TM, Downey JM, Cohen

MV, Critz SD (2005) Circ Res 97:329–336
Costa AD, Jakob R, Costa CL, Andrukhiv K, West IC, Garlid KD

(2006a) J Biol Chem 281:20801–2088
Costa AD, Pierre SV, Cohen MV, Downey JMZ, Garlid KD (2008)

Cardiovasc Res 77:344–352
Costa ADT, Quinlan C, Andrukhiv A, West IC, Garlid KD (2006b)

Am J Physiol 290:H406–415
Crompton M (1999) Biochem J 341(2):233–249
Di Lisa F, Bernardi P (2006) Cardiovasc Res 70(2):191–199
Di Lisa F, Menabo R, Canton M, Barile M, Bernardi P (2001) J Biol

Chem 276(4):2571–2575
Downey JM, Davis AM, CohenMV (2007) Heart Fail Rev 12(3–4):181–

188
Droge W (2002) Physiol Rev 82(1):47–95

Fleury C, Mignotte B, Vayssiere JL (2002) Biochimie 84(2–3):131–
141

Garlid KD, Costa ADT, Quinlan CL, Pierre SV, Dos Santos P (2008) J
Mol Cell Cardiol In Press.

Garlid KD, Dos Santos P, Xie Z-J, Costa ADT, Paucek P (2003)
Biochim Biophys Acta 1606(1–3):1–21

Garlid KD, Paucek P (2003) Biochim Biophys Acta 1606(1–3):23–41
Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio RB,

D’Alonzo AJ, Lodge NJ, Smith MA, Grover GJ (1997) Circ Res
81(6):1072–1082

Garlid KD, Paucek P, Yarov-Yarovoy V, Sun X, Schindler PA (1996) J
Biol Chem 271(15):8796–8799

Garlid KD, Puddu PE, Pasdois P, Costa ADT, Beauvoit B, Criniti A,
Tariosse L, Diolez P, Dos Santos P (2006) Am J Physiol 291:
H152–160

Grover GJ, Garlid KD (2000) J Mol Cell Cardiol 32(4):677–695
Grover GJ, McCullough JR, Henry DE, Conder ML, Sleph PG (1989)

J Pharmacol Exp Ther 251(1):98–104
Hausenloy DJ, Maddock HL, Baxter GF, Yellon DM (2002)

Cardiovasc Res 55(3):534–543
Hausenloy DJ, Tsang A, Yellon DM (2005) Trends Cardiovasc Med

15(2):69–75
Jaburek M, Costa ADT, Burton JR, Costa CL, Garlid KD (2006) Circ

Res 99:878–883
Jennings RB, Ganote CE (1976) Circ Res. 38(5 Suppl 1): 180–191.
Jeong SY, Seol DW (2008) BMB Rep 41:11–22
Kowaltowski AJ (2000) Braz J Med Biol Res 33:241–250
Kowaltowski AJ, Seetharaman S, Paucek P, Garlid KD (2001) Am J

Physiol 280(2):H649–657
MacGowan GA, Koretsky AP (2000) J Card Fail 6(2):144–156
Murry CE, Jennings RB, Reimer KA (1986) Circulation 74(5):1124–

36
Pasdois P, Beauvoit B, Tariosse L, Vinassa B, Bonoron-Adele S, Dos

Santos P (2008) Am J Physiol Heart Circ Physiol 294(5):H2088–97
Pasdois PP, Quinlan CL, Rissa A, Tariosse L, Vinassa B, Pierre SV,

Dos Santos P, Garlid KD (2007) Am J Physiol 292:H1470–8
Quinlan CL, Costa ADT, Costa CL, Pierre SV, Dos Santos P, Garlid

KD (2008) Am J Physiol 295:H953–61
Saks V, Dos Santos P, Gellerich FN, Diolez P (1998) Mol Cell

Biochem 184(1–2):291–307
Saucerman JJ, Brunton LL, Michailova AP, McCulloch AD (2003) J

Biol Chem 278(48):47997–8003
Turrens JF (2003) J Physiol 552(Pt 2):335–44
Weiss JN, Korge P, Honda HM, Ping P (2003) Circ Res 93(4):292–301
Zhao ZQ, Vinten-Johansen J (2006) Cardiovasc Res 70(2):200–11

126 J Bioenerg Biomembr (2009) 41:123–126


	MitoKATP activity in healthy and ischemic hearts
	Abstract
	Introduction
	Effects of mitoKATP activity in the healthy heart
	Effects of mitoKATP activity in the ischemic heart
	Signaling from receptor to mitochondria by signalosome
	Summary and conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


